Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Removing phosphorus (P) from water and wastewater is essential for preventing eutrophication and protecting environmental quality. Lanthanum [La(III)]-containing materials can effectively and selectively remove orthophosphate (PO4) from aqueous systems, but there remains a need to better understand the underlying mechanism of PO4 removal. Our objectives were to 1) identify the mechanism of PO4 removal by La-containing materials and 2) evaluate the ability of a new material, La2(CO3)3(s), to remove PO4 from different aqueous matrices, including municipal wastewater. We determined the dominant mechanism of PO4 removal by comparing geochemical simulations with equilibrium data from batch experiments and analyzing reaction products by X-ray diffraction and scanning transmission electron microscopy with energy dispersive spectroscopy. Geochemical simulations of aqueous systems containing PO4 and La-containing materials predicted that PO4 removal occurs via precipitation of poorly soluble LaPO4(s). Results from batch experiments agreed with those obtained from geochemical simulations, and mineralogical characterization of the reaction products were consistent with PO4 removal occurring primarily by precipitation of LaPO4(s). Between pH 1.5 and 12.9, La2(CO3)3(s) selectively removed PO4 over other anions from different aqueous matrices, including treated wastewater. However, the rate of PO4 removal decreased with increasing solution pH. In comparison to other solids, such as La(OH)3(s), La2(CO3)3(s) exhibits a relatively low solubility, particularly under slightly acidic conditions. Consequently, release of La3+ into the environment can be minimized when La2(CO3)3(s) is deployed for PO4 sequestration.more » « less
-
ABSTRACT The radiance of sky brightness differs principally with wavelength passband. Atmospheric scattering of sunlight causes the radiation in the near-infrared band. The Antarctic is a singular area of the planet, marked by an unparalleled climate and geographical conditions, including the coldest temperatures and driest climate on Earth, which leads it to be the best candidate site for observing in infrared bands. At present, there are still no measurements of night-sky brightness at DOME A. We have developed the Near-Infrared Sky Brightness Monitor (NISBM) in the J, H, and Ks bands for measurements at DOME A. The instruments were installed at DOME A in 2019 and early results of NIR sky brightness from 2019 January–April have been obtained. The variation of sky background brightness with solar elevation and scanning angle is analysed. The zenith sky flux intensity for the early night at DOME A in the J band is in the 600–1100 μJy arcsec−2 range, that in the H band is between 1100 and 2600 μJy arcsec−2, and that in the Ks band is in the range ∼200–900 μJy arcsec−2. This result shows that the sky brightness in J and H bands is close to that of Ali in China and Mauna Kea in the USA. The sky brightness in the Ks band is much better than that in Ali, China and Mauna Kea, USA. This shows that, from our early results, DOME A is a good site for astronomical observation in the Ks band.more » « less
An official website of the United States government
